SUBSTRATE SPECIFICITY OF DIPLOCOCCAL β -N-ACETYLHEXOSAMINIDASE, A USEFUL ENZYME FOR THE STRUCTURAL STUDIES OF COMPLEX TYPE ASPARAGINE-LINKED SUGAR CHAINS

bу

Katsuko Yamashita, Takashi Ohkura, Hideo Yoshima and Akira Kobata

From the Department of Biochemistry, Kobe University School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650 Japan

Received March 30,1981

SYMMARY: The substrate specificity of diplococcal β -N-acetylhexosaminidase was studied in detail by using oligosaccharides of known structure. The enzyme cannot cleave GlcNAc β l \rightarrow 4Man and GlcNAc β l \rightarrow 6Man linkages although it readily hydrolyzes GlcNAc β l \rightarrow 2Man, GlcNAc β l \rightarrow 3Gal and GlcNAc β l \rightarrow 6Gal linkages. The GlcNAc β l \rightarrow 2Man linkage in GlcNAc β l \rightarrow 4(GlcNAc β l \rightarrow 2)Man group is cleaved by the enzyme but the linkage in GlcNAc β l \rightarrow 6(GlcNAc β l \rightarrow 2)Man group is not, probably because of the steric effect of GlcNAc β l \rightarrow 6Man residue on GlcNAc β l \rightarrow 2Man linkage. Similar steric effect is also observed in the case of GlcNAc β l \rightarrow 2Man α l \rightarrow 6(GlcNAc β l \rightarrow 2Man α l \rightarrow 3)(GlcNAc β l \rightarrow 4)Man β l \rightarrow 4 GlcNAc β l. The enzyme can cleave only one of the two GlcNAc β l \rightarrow 2Man linkages of the heptaitol and produces GlcNAc β l \rightarrow 2Man α l \rightarrow 6(Man α l \rightarrow 3)(GlcNAc β l \rightarrow 4)Man β l \rightarrow 4GlcNAc β l. The substrate specificity of diplococcal β -N-acetylhexosaminidase can be used effectively for the structural studies of asparagine-linked sugar chains.

 β -N-Acetylglucosaminidase in the culture medium of Diplococcus pneumoniae was first purified by Hughes and Jeanloz (1) and has been used widely for the studies of glycoproteins because it acts on intact glycoproteins as well as oligosaccharides. During the structural study of the asparagine-linked sugar chains of plasma membrane glycoproteins of calf thymocytes (2), we noticed that some of the β -N-acetylglucosamine residues located at the non-reducing termini of the sugar chains could not be removed by diplococcal β -N-acetylglucosaminidase, although they were readily removed by jack bean β -N-acetylhexosaminidase. Since exoglycosidases with narrow substrate specificities were useful in discriminating positional isomers in sugar chain structures (3-9), the substrate specificity of diplococcal β -N-acetylglucosaminidase was studied by using various oligosaccharides currently available.

MATERIALS AND METHODS

Oligosaccharides -- Manαl→6 (Manαl→3)Manαl→6 (GlcNAcβl→2Manαl→3) (GlcNAcβl→4)Manβl→4GlcNAc $_{OT}^{-1}$ and Manαl→3Manαl→6[GlcNAcβl→4(GlcNAcβl→2)Manαl→3] (GlcNAcβl→4)Manβl→4 GlcNAc $_{OT}^{-1}$ were prepared from ovalbumin glycopeptides as reported previously (10). GlcNAcβl→2Manαl→3Manβl→4GlcNAc $_{OT}^{-1}$, GlcNAcβl→2Manαl→6(GlcNAcβl→2Manαl→6(GlcNAcβl→2Manαl→6(GlcNAcβl→2Manαl→6)Manβl→4GlcNAc $_{OT}^{-1}$, GlcNAcβl→2Manαl→6[GlcNAcβl→2Manαl→6[GlcNAcβl→2Manαl→6]Manβl→4GlcNAc $_{OT}^{-1}$, GlcNAcβl→6(GlcNAcβl→2)Manαl→6[GlcNAcβl→2Manαl→3)Manβl→4GlcNAc $_{OT}^{-1}$, GlcNAcβl→2)Manαl→6[GlcNAcβl→2)Manαl→3] Manβl→4GlcNAc $_{OT}^{-1}$, GlcNAcβl→2)Manαl→6[GlcNAcβl→2)Manαl→3] Manβl→4GlcNAc $_{OT}^{-1}$, were prepared by jack bean β-galactosidase digestion of the urinary oligosaccharides obtained from $_{M1}^{-1}$ -gangliosidosis patient (11). GlcNAcβl→4Manαl→3Manβl→4GlcNAc $_{OT}^{-1}$, GlcNAcβl→6Manβl→4GlcNAc $_{OT}^{-1}$ and GlcNAcβl→2Manαl→3) (GlcNAcβl→4)Manβl→4GlcNAc $_{OT}^{-1}$ were purified from oligosaccharides excreted in the urine of Sandhoff disease patient². GlcNAcβl→3Galβl→4GlcO $_{T}^{-1}$ and GlcNAcβl→4Galβl→4GlcO $_{T}^{-1}$ were obtained by partial acid hydrolysis from lacto-N-neohexaitol (12). In this paper these oligosaccharides will be called by alphabet as shown in Table I.

Chemicals and Enzymes -- NaB[3 H] $_4$ (154 mCi/nmol) was purchased from New England Nuclear, Boston, Mass. Jack bean α -mannosidase was prepared according to the method of Li and Li (13). Diplococcal β -N-acetylglucosaminidase was purified by the method of Glasgow et al (14). One unit of glycosidase was defined as the amount of enzyme required to hydrolyze 1 μ mol of p-nitrophenyl-glycosides per min.

Enzyme Assay -- The standard assay mixture for diplococcal β -N-acetylglucosaminidase activity contained 2 nmol (approximately 2 x 10 cm) of radioactive oligosaccharide and appropriate amount of diplococcal β -N-acetylglucosaminidase in 50 μ l of 0.05 M sodium citrate buffer, pH 6.0. The mixture was incubated at 37°C for 18 h. One drop of toluene was added to all reaction mixtures to inhibit bacterial growth. Reaction was terminated by heating the reaction mixture in a boiling water bath for 2 min. The solution was passed through a mixed bed column (0.5 x 3 cm) of Bio-Rad AG-50 (H⁺-form) and AG-3 (OH⁻-form) and the column was washed with 3 bed volumes of distilled water. The eluate and washing were combined and evaporated to dryness. The residue was dissolved in 0.4 ml of water containing 4.0 mg dextran hydrolysate. The solution was analyzed by Bio-Gel P-4 column chromatography.

General Methods -- Radioactivity was determined by Aloka liquid scintillation spectrometer model LSC-700. Bio-Gel P-4 (under 400 mesh) column chromatography was performed using columns (2 m x 2 cm i.d.) equipped with a water jacket. During operation the column was kept at 55°C by circulating warm water in the jacket. Sugars were eluted from the column with distilled water at a flow rate of 1.0 ml/min using model 6000A solvent delivery system (Waters Associates, Inc., Milford). A differential refractometer, Shodex RI model SE-11 (Showa Denko Ltd., Tokyo), was used for monitoring dextran hydrolysate eluted from the column, and eluate was fractionated 3.0 ml per tube. Methylation analysis of oligosaccharides was performed as described in the previous paper (15) except the times of hydrolysis were prolonged to 5 h. Analysis of partially-O-methylated hexitols and N-acetylglucosaminitols were performed with a gas chromatography-mass spectrometer Shimadzu-LKB model 9,000 (Shimadzu Corporation) using either a glass column (2.5 mm x 1 m) of 5% OV-17 on Gas-chrom Q (60 to 80 mesh) or that (3 mm x 2 m) of 3% OV-210 coated on Gas-chrom Q (100 to 120 mesh). The column temperature was programmed from 140°C to 220°C at a rate of 2°C/min.

Substript OT is used in this paper to indicate NaB³H4 reduced oligosaccharides. All sugar mention in this paper are of D configuration except for fucose.

Yamashita, K., Tachibana, Y., Nishigaki, M., Suzuki, Y., and Kobata, A. m.s. in preparation.

Table I. Structures and effective sizes of substrates and their hydrolysis products with $diplococcal\ \beta$ -N-acetylhexosaminidase in Bio-Gel P-4 column chromatography.

Substrates		Effective size	Hydrolysis Products	Effective size	
Name	Structures	(glucose units)		(glucose units	
a.	$G\beta 1 \rightarrow 2M\alpha 1 \rightarrow 3M\beta 1 \rightarrow 4G_{OT}$	6.2	$M\alpha 1 \rightarrow 3M\beta 1 \rightarrow 4G_{OT}$	4.2	
b.	$G\beta 1 \rightarrow 2M\alpha 1 \rightarrow 6M\beta 1 \rightarrow 4G_{OT}$	5.8	$M\alpha 1 \rightarrow 6M\beta 1 \rightarrow 4G_{OT}$	3.9	
c.	$G\beta 1 \rightarrow 4M\alpha 1 \rightarrow 3M\beta 1 \rightarrow 4G_{OT}$	6.1	non hydrolyzed	6.1	
đ.	$G\beta 1 \rightarrow 6M\alpha 1 \rightarrow 6M\beta 1 \rightarrow 4G_{OT}$	5.7	non hydrolyzed	5.7	
e.	$G\beta 1 \rightarrow 2M\alpha 1 \rightarrow 6$ $G\beta 1 \rightarrow 2M\alpha 1 \rightarrow 3M\beta 1 \rightarrow 4G_{OT}$	8.9	$\frac{M\alpha 1}{M\alpha 1}$ $\frac{6}{M\alpha 1}$	5.0	
f.	$\begin{array}{c} G\beta 1 + 2M\alpha 1 \\ G\beta 1 + 4\\ 4\\ 4\\ 6\beta 1 \end{array} \xrightarrow{6} M\beta 1 + 4G_{OT}$ $G\beta 1 \xrightarrow{2} M\alpha 1 \xrightarrow{3} M\beta 1 + 4G_{OT}$	10.8	f'. $\frac{M\alpha l}{6}$ $\frac{6}{6}$ $M\beta l + 4G_{OT}$	6.8	
g.	$G\beta 1$	10.4	g'. $G\beta \stackrel{6}{}_{M\alpha} \stackrel{6}{}_{M\beta} \stackrel{6}{}_{M\beta} \stackrel{6}{}_{M\beta} \stackrel{1}{}_{A} \stackrel{6}{}_{OT}$	8.3	
h.	$G\beta$ 1 $GM\alpha$ 1 $G\beta$ 1 $GM\alpha$ 1 $G\beta$ 1 $GM\alpha$ 1 $G\beta$ 1 $GM\alpha$ 1 $G\beta$	12.2	h'. $G\beta 1$ $G\beta $	10.4	
i.	$G\beta 1$ 6 $M\alpha 1 + 6M\beta 1 + 4G$ $G\beta 1$ $G\beta 1$	7.4	non hydrolyzed	7.4	
j.	$ \begin{array}{c} G\beta 1 \\ M\alpha 1 \\ 6 \\ M\alpha 1 \end{array} $ $ \begin{array}{c} 4 \\ M\alpha 1 \end{array} $ $ \begin{array}{c} 64 \\ M\beta 1 \end{array} $ $ G\beta 1 $ $ C\beta 1 $ $ C\beta 1 $	9.3	j'· Mα1 6 4 Mα1 6 4 Mα1 3 Mβ1 + 4 GOT	7.6	
k.	$\begin{array}{c} G\beta1 \\ \downarrow \\ M\alpha1+3M\alpha1 \\ 64 \\ G\beta1 \\ 4\\ M\alpha1 \\ 3\\ M\beta1+4G_{OT} \\ G\beta1 \\ 2\\ M\alpha1 \\ 3\\ M\beta1+4G_{OT} \\ G\beta1 \\ 4\\ M\alpha1 \\ 4\\$	10.2	k'. GB1 $M\alpha 1 + 3M\alpha 1 + 6$ $G\beta 1 + 4M\alpha 1 + 3$ GB1 + 4GOT	8.6	
1.	$ \begin{array}{c} G\beta 1 \\ \downarrow \\ G\beta 1 \rightarrow 2M\alpha 1 \rightarrow 6 \\ 4 \\ G\beta 1 \rightarrow 2M\alpha 1 \rightarrow 3 \\ M\beta 1 \rightarrow 4G_{OT} \end{array} $	9.3	1'. $G\beta1$ $G\beta1+2M\alpha + 64$ $M\alpha 1^{-3}M\beta1+4G_{OT}$	7.8	

G=GlcNAc, M=Man

RESULTS AND DISCUSSION

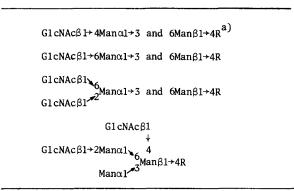
Since the exact glycon specificity of diplococcal β -N-acetylglucosaminidase has never been studied, an experiment was performed to see if the enzyme hydrolyzes

 β -N-acetylgalactosamine linkage. When 200 μ g of p-nitrophenyl β -N-acetylgalactosaminide was incubated with 10 munits of diplococcal β -N-acetylglucosaminidase in 220 μ l of 0.05 M sodium citrate buffer, pH 6.0 at 37°C, p-nitrophenol was released at a rate of 1/6.7 of that from p-nitrophenyl β -N-acetylglucosaminide. Therefore, diplococcal β -N-acetylglucosaminidase hydrolyzes β -N-acetylgalactosaminyl linkage like enzymes from other sources. Accordingly, the diplococcal enzyme will be called as β -N-acetylhexosaminidase in the following part of this paper.

One N-acetylglucosamine residue was released from oligosaccharides a and bby incubation with 2 munit of diplococcal β -N-acetylhexosaminidase. On the other hand, oligosaccharides c and d were totally resistant to incubation even with 50 munit of the enzyme. These results indicate that diplococcal β-N-acety1hexosaminidase hydrolyzes GlcNAcβ → 2Man linkage but not GlcNAcβ → 4Man and GlcNAcβ 1,6Man linkages. In order to obtain more information about the substrate specificity of the enzyme, oligosaccharides with more complicated structures were incubated with 10 munit of the enzyme. Oligosaccharide e was completely converted to a radioactive tetrasaccharide releasing 2 mol N-acetylglucosamine residues. The structure of the tetrasaccharide was confirmed as shown in Table I by methyllation analysis (data not shown). Oligosaccharide f also released 2 N-acety1glucosamine residues and was converted to a radioactive pentasaccharide, the structure of which was confirmed by methylation analysis (Table II). Therefore, diplococcal β-N-acetylhexosaminidase can readily hydrolyze all GlcNAcβl→2Man linkages in these oligosaccharides and cannot cleave GlcNAcβl→4Man linkage in oligosaccharide f. The results with oligosaccharides g and h were not that simple: only 1 N-acetylglucosamine residue was removed from both oligosaccharides though they have two GlcNAc β 1 \rightarrow 2Man groups. No more N-acetylglucosamine residue was released from the radioactive products by the second incubation with 50 munit of the enzyme. In order to identify the N-acetylglucosamine residue removed from the two oligosaccharides by the enzyme action, the products (g') and h'were subjected to methylation analysis. The data shown in Table II indicated

Vol. 100, No. 1, 1981 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Table II.	Methylation analysis of the products obtained by diplococcal								
β-N-acetylhexosaminidase digestion.									


Partially methylated sugar	Molar ratio ^{a)}					
	f'	g ¹	h'	j'	k'	1'
Mannitol					*	
2,3,4,6-Tetra- <i>O</i> -methyl (1,5-di- <i>O</i> -acetyl)	1.1	1.1	-	3.3	1.0	1.0
3,4,6-Tri-O-methyl (1,2,5-tri-O-acetyl)	-	~	-	-	-	1.0
2,4,6-Tri-O-methyl (1,3,5-tri-O-acetyl)	-	~	~	-	0.9	-
2,3,6-Tri-O-methy1 (1,4,5-tri-O-acetyl)	0.9	~	1.1	-	1.1	-
3,4-Di-O-methy1 (1,2,5,6-tetra-O-acety1)	-	0.9	0.9	-	-	-
2,4-Di-O-methyl (1,3,5,6-tetra-O-acetyl)	1.0	1.0	1.0	1.0	-	-
2-Mono-O-methy1 (1,3,4,5,6-di-O-acety1)	_	-	-	0.9	1.1	0.9
2-N-Methylacetamido- 2-deoxyglucitol						
1,3,5,6-Tetra-O-methyl (4-mono-O-acetyl)	0.8	0.7	0.9	0.7	0.7	0.9
3,4,6-Tri-O-methyl (1,5-di-O-acetyl)	1.1	2.3	3.2	1.2	2.2	2.3

a) Numbers in the table were calculated by making the value of the underlined partially methylated additol acetate as 1.0.

that they have structures as shown in Table I. These results indicate that GlcNAc β l+2Man linkage in GlcNAc β l+6(GlcNAc β l+2)Man group is not hydrolyzed by diplococcal β -N-acetylhexosaminidase, possibly by the steric effect of the C-6 linked N-acetylglucosamine residue. That the neighbouring Man α l+3 residue plays no inhibitory role was confirmed by the following experiment. Radioactive oligosaccharide g' was converted to radioactive oligosaccharide i as shown in Table I by incubation with jack bean α -mannosidase. The radioactive pentasaccharide was completely resistant to diplococcal β -N-acetylhexosaminidase action. Some of the asparagine-linked sugar chains of the plasma membrane glycoproteins of calf thymocytes contain GlcNAc β l+4(GlcNAc β l+2)Man α l+6 and GlcNAc β l+6(GlcNAc β l+2)Man α l+3 groups (2). Since the former group was converted to GlcNAc β l+4Man α l+6 and the latter was not hydrolyzed by diplococcal β -N-acetylhexosaminidase treatment (2), the aglycon specificity does not include the α -mannosyl linkage.

Vol. 100, No. 1, 1981 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Table III. Structures resistant to diplococcal β-N-acetylhexosaminidase digestion

a) R indicates GlcNAc $_{OT}$, GlcNAc $_{OT}$ and GlcNAc $_{OT}$ 4(Fuc $_{OL}$ +6)GlcNAc $_{OL}$

That diplococcal β -N-acetylhexosaminidase cannot remove N-acetylglucosamine residue linked at the C-4 position of the β -mannosyl residue of the trimannosyl core portion was confirmed by using oligosaccharides j and k. By the β -N-acetylhexosaminidase treatment, they were converted to j' and k' in Table I, the structures of which were confirmed by methylation study (Table II).

An interesting observation is that $diplococcal\ \beta$ -N-acetylhexosaminidase removed only 1 N-acetylglucosamine residue from oligosaccharide l. Methylation analysis of the product (l') shown in Table II indicated that 1 of the 2 GlcNAc β 1+2Man linkages in oligosaccharide l was hydrolyzed. This linkage should be exclusively located on Man α 1+3 side because GlcNAc β 1+4 residue in oligosaccharide j did not inhibit the hydrolysis of its GlcNAc β 1+2Man linkage by β -N-acetylhexosaminidase. Therefore, the structure of oligosaccharide l' should be as shown in Table I. These results may indicate that a GlcNAc β 1+4 residue in GlcNAc β 1+2Man α 1+6 (GlcNAc α 1+4)Man group sterically inhibits the hydrolysis of the neighbouring GlcNAc α 1+2 Man linkage by α 1-1-acetylhexosaminidase.

Table III summarizes the aglycon specificity of diplococcal β -N-acetyl-hexosaminidase so far described. It must be stressed that the aglycon specificity can be applied regardless of the structure of "R" moiety. Although

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Vol. 100, No. 1, 1981

no data was shown, we have confirmed that oligosaccharides with $GlcNAc_{OT}$, $GlcNAc\betal \rightarrow$ $4G1cNAc_{OT}$ and $G1cNAc\beta1+4(Fuc\alpha1+6)G1cNAc_{OT}$ as their "R" portions gave the same results by diplococcal β-N-acetylhexosaminidase digestion. Since the oligosaccharides a~l are all structurally related to asparagine-linked sugar chains, the specificity might be used effectively in the study of the sugar chains of glycoproteins. The enzyme, however, may not be useful for the study of mucin-type sugar chains, because it released an N-acetylglucosamine residue from GlcNAc β l \rightarrow 3Gal β l \rightarrow 4Glc $_{OT}$ and G1cNAc β 1 \rightarrow 6Ga1 β 1 \rightarrow 4G1c $_{OT}$ (data not shown). G1cNAc β 1 \rightarrow 3Ga1 and G1cNAc β 1 \rightarrow 6Ga1 linkages represent most of the N-acetylglucosaminyl linkages in mucin-type sugar chains so far known.

 $\hbox{ACKNOWLEDGEMENT - The authors wish to thank Ms J. Fujii for her expert secretarial assistance. This work has been supported in part by research grants from } \\$ the Scientific Research Funds (1980-1981) of the Ministry of Education, Science and Culture of Japan and of the Cancer Division, Public Health Bureau, the Ministry of Health and Welfare, Japan.

REFERENCES

- 1. Hughes, R. C., and Jeanloz, R. W. (1964) Biochemistry 3, 1535-1543
- Yoshima, H., Takasaki, S., and Kobata, A. (1980) J. Biol. Chem. 255, 10793-
- Kobata, A., and Ginsburg, V. (1972) J. Biol. Chem. 247, 1525-1529 3.
- Tai, T., Yamashita, K., Ogata, -A. M., Koide, N., Muramatsu, T., Iwashita, S., Inoue, Y., and Kobata, A. (1975) *J. Biol. Chem.* 250, 8569-8575 Yamashita, K., Tachibana, Y., and Kobata, A. (1976) *Biochemistry* 15, 3950-
- 3955
- Yamashita, K., Tachibana, Y., and Kobata, A. (1977) Arch. Biochem. Biophys. 182, 546-555
- Yamashita, K., Tachibana, Y., and Kobata, A. (1977) J. Biol. Chem. 252, 5408-
- Yamashita, K., Tachibana, Y., Takada, S., Matsuda, I., Arashima, S., and Kobata, A. (1979) J. Biol. Chem. 254, 4820-4827
- Mizuochi, T., Yamashita, K., Fujikawa, K., Kisiel, W., and Kobata, A. (1979) J. Biol. Chem. 254, 6419-6425
- Tai, T., Yamashita, K., Ito, S., and Kobata, A. (1977) J. Biol. Chem. 252, 10. 6687-6694
- Yamashita, K., Ohkura, T., Okada, S., Yabuuchi, H. and Kobata, A. (1981) 11. J. Biol. Chem., 256, in press
- 12.
- 13.
- Kobata, A., and Ginsburg, V. (1972) Arch. Biochem. Biophys. 150, 273-281 Li, Y. -T., and Li, S. -C. (1972) Methods Enzymol. 28, 702-713 Glasgow, L. R., Paulson, J. C., and Hill, R. L. (1977) J. Biol. Chem, 252, 14. 8615-8623
- Endo, T., Yamashita, K., Tachibana, Y., Tojo, S., and Kobata, A. (1979) 15. J. Biochem. (Tokyo), 85, 669-679